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Abstract

We study the kinetics for the search of an immobile target by randomly moving
searchers that detect it only upon encounter. The searchers perform intermittent
random walks on a one-dimensional lattice. Each searcher can step on a nearest
neighbor site with probability α or go off lattice with probability 1−α to move
in a random direction until it lands back on the lattice at a fixed distance L away
from the departure point. Considering α and L as optimization parameters,
we seek to enhance the chances of successful detection by minimizing the
probability PN that the target remains undetected up to the maximal search
time N. We show that even in this simple model, a number of very efficient
search strategies can lead to a decrease of PN by orders of magnitude upon
appropriate choices of α and L. We demonstrate that, in general, such optimal
intermittent strategies are much more efficient than Brownian searches and
are as efficient as search algorithms based on random walks with heavy-tailed
Cauchy jump-length distributions. In addition, such intermittent strategies
appear to be more advantageous than Lévy-based ones in that they lead to more
thorough exploration of visited regions in space and thus lend themselves to
parallelization of the search processes.
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1. Introduction

Search processes are ubiquitous in nature: predators search for prey, prey also hunt, molecules
search for each other to recombine in order to produce required chemicals, proteins search for
target sequences on DNAs. Human beings spend their lives searching for different things—
better jobs, shelters, partners, lost keys; they also seek efficient search strategies to minimize
the time to reach the desired target or at least to enhance their chances of eventually finding it.

The search for a desired target may depend on a variety of different conditions and may
take place in different environments. Targets may be sparse, hidden, difficult to detect even
when found. The targets may be mobile or immobile, they may try to avoid searchers, there
may be one target or many. They may have a finite life-time and vanish before they are
detected. Searchers, on the other hand, may search ‘blindly’, detecting the target only upon
encounter or they may perceive distant targets and adjust their motion accordingly. They may
have no memory of previously visited areas or they may avoid such areas. The searchers may
act individually or in swarms, optimizing their search efficiency by exchanging information.
Finally, the ‘efficiency’ of a search may be judged by a variety of measures, including the time
to reach a target or targets, the number of encounters of searchers and targets per unit time or
the exploration range of space per unit time. In general, for each specific situation different
search strategies may be appropriate. The quest for optimal strategies has motivated a great
deal of work in the past few years [1–12, 13–27].

Earlier work tended to focus on deterministic search algorithms (see, e.g., [1–4] and
references therein) specific to human activities such as, say, rescue operations or the search
for natural resources. More recent studies have focused on random search strategies. In this
context, it has become quite clear that strategies based on Lévy flights (instantaneous) or
Lévy walks (occurring with a finite velocity) are according to all measures more advantageous
than strategies based on conventional diffusive motion or random walks with steps to nearest
neighbors only (Brownian search) [5–12]. Lévy searchers perform excursions whose lengths
l are random variables with heavy-tailed distributions p(l) of the form

p(l) ∼ B

lμ+1
, 0 < μ < 2, (1)

where B is a normalization constant. In particular, it was demonstrated in [28] that using
the Cauchy distribution of jump lengths as given in equation (1) with μ = 1 instead of a
Gaussian distribution (Brownian search) allows for a faster cooling scheme, and hence for a
considerable reduction of computer time in the search for a global minimum in nonconvex
(multiple extrema) energy landscapes by simulated annealing. Aside from this, extensive data
have been presented allegedly supporting the idea that many of the species in the living world
do indeed follow Lévy-type random motion in their search [5–12]. This point, however, has
been questioned recently in [29, 30]. The main objections of [29, 30] have recently been
re-examined in [12], where it was concluded that Lévy-based strategies may still be consistent
with experimental observations if one takes into account a highly non-homogeneous spatial
distribution of prey. More sophisticated models with adaptive behavior in which the foragers
use their cognitive skills to develop more efficient foraging strategies have also started to
appear in the literature (see, e.g., [31]).

Following the observation of trajectories of foraging animals such as lizards, fish or birds,
in which active local search phases randomly alternate with relocation phases (see, e.g., [13,
14]), another type of random search—an intermittent search—has been proposed. In this
algorithm, a search is characterized by two distinct types of motions, a ballistic relocation
stage during which the searcher is non-receptive to the target and a relatively slow phase with
random Brownian-type motion during which the target may be detected [15–18, 20] (see also
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[19]). In this approach, one aims to minimize the time of the first passage to the target from
a given location by varying, for example, the relative durations of the active and relocation
stages.

In this paper, we pursue the optimization of an intermittent strategy. A simpler version of
our model was presented in [20], where we developed a search algorithm based on intermittent
random walks that involve nearest neighbor steps and off-lattice relocations of a fixed length
L. There, instead of minimizing the first passage time to the target, we sought to maximize
the success of the search by minimizing the target non-detection probability over a fixed
finite maximum search time. We note that the time derivative of this probability defines the
distribution function of the first passage time to the detection event. Thus, contrary to previous
work in which only the mean first passage time was optimized [15–18, 20], our goal was
to optimize the full distribution function. Our optimization parameter was the intermittency
parameter α that determines whether the next step will be on- or off-lattice. It was shown, both
analytically and numerically, that the probability of failure to detect the target over a finite
search time can be made smaller by many orders of magnitude upon an appropriate choice of
this parameter. We note that in [21] a different intermittent search algorithm was proposed in
which the length of the relocation stage is a random variable with a heavy-tailed distribution in
equation (1). In that work, it was concluded that such a combined strategy is advantageous over
intermittent searches with exponentially distributed [15–17] or fixed [20] relocation lengths
since it allows a searcher to find the target more quickly in the critical case of rare targets,
and since the search performance is much less dependent on adaptation to the target density.
However, we argue that in some (albeit not all) situations, strategies involving Lévy-distributed
relocations cannot be optimal. This occurs when there is some maximal time that the search is
allowed to run. Allowing the length of the relocation stage (and consequently, the time spent
on each relocation tour) to have a heavy-tailed distribution would lead to some portion of the
search process that would involve unnecessarily long relocations divorced from the targets,
thus not contributing to the overall finite time effort. Thus, when appropriate, an optimal
search algorithm should be based on relocation length distributions that explicitly account for
the fact that a search process is limited in time. It may well be that the optimal jump-length
distribution should itself vary with time. Furthermore, trajectories of Lévy walks or flights
are ‘overstretched’ in the sense that such walks explore space in a very irregular manner. The
visited area consists of a patchy set of disconnected clusters, leaving large unexplored voids
compared to the case of a Brownian search. Additionally, when many Lévy searchers are
involved, the fact that a Lévy distribution does not have moments induces rapid mixing. This
mixing might be advantageous if the detection probability is low (or the false alarm probability
high), such that multiple rechecking of each site by other searchers is required in order to spot
the target. Otherwise, this very efficient mixing might be a disadvantage since it does not
favor the parallelization of the search process by dividing the searched area into subunits
and assigning a separate domain to each searcher. In the ‘living’ world, animals are often
constrained to their assigned territories, and even an occasional incursion into a neighbor’s
terrain while searching for prey may cause serious difficulties.

In this paper, we revisit the question of an optimal jump-length distribution underlying
an efficient search algorithm. Focusing on the one-dimensional case (for which Lévy-based
search strategies are said to most dramatically outperform intermittent ones), we study the
search kinetics of a ‘hidden’ immobile target located at the origin of an infinite lattice by a
concentration ρ of randomly moving searchers. The motion of the searchers is intermittent,
consisting of two distinct, randomly alternating stages—ballistic, off-lattice relocations with
finite velocity over a fixed distance L and random walks between nearest neighboring sites.
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In other words, we consider a search by intermittent random walkers with a jump-length
distribution of the form (very different from that in equation (1))

p(l) = α

2
[δ(l − 1) + δ(l + 1)] +

(1 − α)

2
[δ(l − L) + δ(l + L)] , (2)

such that the searchers step on nearest neighbors with probability α and, with probability
1 − α, perform long jumps over a distance L [20]. The process evolves in discrete time
n = 0, 1, 2, . . . , N , where N is the maximal time the search process may run. This time may
depend, for instance, on our patience or on experimental constraints. Note that the constraint
of the maximal search time N is the crucial aspect of our work which makes our analysis
very different from other models. Steps to nearest neighbors take unit time, while off-lattice
relocations over a distance L require time T. The term ‘hidden’ means that a searcher cannot
perceive the target when off-lattice. A searcher only detects the target when it arrives at the
site on which the target is located.

We pose the following question: is it possible to choose α = αN and L = LN , dependent
on the maximal search time N but independent of the running time n, which optimizes the
search efficiency and leads to a performance that is better than Lévy-based strategies? In
order to answer our question, our first goal is to calculate the probability PN that the target
remains undetected up to the maximal search time N and to determine its asymptotic behavior
analytically in the large-N limit. Then, considering α = αN and L = LN as optimization
parameters, we seek to enhance the searchers’ chances of success by minimizing PN . We
will demonstrate that, depending on whether we are at liberty to tune α (as in [20]) or both
α and L, different optimal strategies can be realized all of which can decrease the value of
PN by many orders of magnitude compared to a Brownian search. We also show that even
the simple distribution (2) with optimal α = αN and L = LN yields very efficient search
algorithms comparable to and in some cases better than Lévy-based strategies. Moreover, in
striking contrast to the latter, optimal intermittent walks lead to much denser exploration of
space. These results support our claim that Lévy-based searches are not the best algorithms
when the search is limited in time.

2. Model and basic equations

Consider a one-dimensional regular lattice of unit spacing containing M sites labeled by s. The
lattice is a circle, that is, we use periodic boundary conditions. At one of the lattice sites, say at
the origin s = 0, we place an immobile target. Then we randomly place K searchers under the
constraint that none is placed at the site of the hidden target. We focus on the behavior in the
thermodynamic limit, K → ∞,M → ∞, with a finite mean density of searchers ρ = K/M .
We note that the model under study can also be solved in the general case of finite K and
M, but the calculations become more involved without adding significant new features to our
conclusions.

Next, we allow the searchers to move according to the following rule. At each tick of
the clock, n = 1, 2, 3, . . . , N , each searcher selects randomly between two possibilities: with
probability α, it moves with equal likelihood to one of its nearest neighboring sites and with
probability (1−α) it leaves the lattice and flies off-lattice with a given velocity V until it lands
L sites away from the departure site. The distance L is fixed, but either direction of the flight
is chosen at random with equal probabilities. The time it spends off-lattice during the flight is
T = L/V . This parameter can take integer values, T = 1, 2, . . . , L. Note that this condition
defines the velocity V . There is no restriction on multiple searcher occupancy of the sites.
Note as well that in the two ‘pure’ cases, α = 1 and α = 0, the model reduces to standard
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random walks. Here we take both α and L to be independent of n but possibly dependent on
the maximal search time N. An interesting situation with time-dependent α = αn and L = Ln

will be discussed elsewhere [33]. We focus on perfect detection, that is, a searcher recognizes
the target immediately upon first contact. The case of imperfect recognition can be solved
using the same techniques and will also be discussed elsewhere [33].

The probability that the target has not been detected by step N is related in a simple way
to SN , the number of distinct sites visited up to that time, as

PN = exp (−ρSN) (3)

(see, e.g., [35]). This result, which holds for independent searchers and was explicitly shown
to be valid for our model in [20], is a crucial equation since we will arrive at results for PN

via calculations of SN . A larger SN leads to a smaller probability that the target remains
undetected and thus to a better search algorithm. In general, SN ∼ ANγ with 0 < γ � 1.
One thus expects that larger γ leads to a more efficient search and explains why, intuitively,
it was believed that the most efficient search algorithm should be based on Lévy walks with
a broad distribution of jump lengths, for which SN grows more rapidly than in the case of
simple Brownian motion. As an aside, however, we note that even for standard Brownian
motion SN ∼ AN/ ln(N) in two dimensions and SN ∼ AN in three dimensions; consequently,
choosing Lévy walks as a search mechanism will not lead to any significant gain compared to
a Brownian search in these higher dimensions (except perhaps through the prefactor A). In
one dimension, however, there are significant differences in the growth rates of SN between
Lévy and Brownian motions, and our task is to explore the place of intermittent random walks
in this panorama.

3. Expected number of distinct visited sites

The expected number of distinct sites visited can be calculated once we determine the
probability P(s|s0; n) that a given searcher, starting its intermittent random walk at site
s0 at time moment n = 0, appears at site s at time moment n. More specifically, the generating
function S(z) of SN , defined as

S(z) =
∞∑

N=0

SNzN, (4)

and the lattice Green function (or site occupation generating function)

P(s|s0; z) =
∞∑

n=0

P(s|s0; n)zn (5)

of the intermittent random walk are related to each other through [20]

S(z) = 1

1 − z

∑
s P (s|0; z)

P (0|0; z)
. (6)

Hence, given P(s|0; z), we obtain S(z) by virtue of equation (6). We then determine the
N-dependence of SN by inverting the discrete Laplace transform in equation (4).

The probability P(s|s0; n) obeys the recurrence relation

P(s|s0; n) = α

2
[P(s − 1|s0; n − 1) + P(s + 1|s0; n − 1)]

+
1 − α

2
[P(s − L|s0; n − T ) + P(s + L|s0; n − T )], (7)
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which explicitly takes into account that jumps between nearest neighboring sites proceed in
unit time, while long-range jumps over distance L require an integer time T. Equation (7) thus
defines a non-Markovian process with a memory. Note also that since the intermittent random
walk defined by equation (7) is homogeneous so that P(s|s0; n) = P(s − s0|0; n), without
loss of generality we henceforth set s0 = 0.

Multiplying both sides of equation (7) by zn and performing the summation, we find that
P(s|0; z) obeys

P(s|0; z) = 1

π

∫ π

0

cos(ks) dk

1 − αz cos(k) − (1 − α)zT cos(kL)
, (8)

and consequently the generating function of the expected number of distinct sites visited is
given by

S(z) = π

(1 − z)(1 − αz − (1 − α)zT )

[∫ π

0

dk

1 − αz cos(k) − (1 − α)zT cos(kL)

]−1

. (9)

Before we proceed further, the following remarks are in order. Note that P(s|0; z) in
equation (8), and consequently S(z) in equation (9), can be calculated explicitly in the two
‘pure’ random walk cases, α = 1 and α = 0. In these two limits, one finds for SN the large-N
asymptotic behavior

SN(α = 1) =
(

8N

π

)1/2

+ O

(
1

N1/2

)
(10)

and

SN(α = 0) =
(

8N

πT

)1/2

+ O

(
1

N1/2

)
. (11)

The result in equation (10) is well known (see, for example, [35]).

• Sublinear growth of SN with time N signifies that each site visited by such a walk is most
probably visited many times. This oversampling is precisely the reason why searching
a target in a one-dimensional system by a Brownian search is not very efficient, since
the walker wastes a great deal of time revisiting sites that do not contain the target.
That is why, in fact, recourse has been made to Lévy-based searches, since they reduce
oversampling and lead to stronger growth of SN with N.

• The result in equation (11) is the same as that in equation (10) with the replacement
N → N/T and hence does not represent a good search strategy either—in fact, it is
worse. When relocations over a distance L take unit time as do nearest neighbor steps,
the results in equations (10) and (11) coincide, as they should.

• Note as well that in one dimension, equation (3) with SN in equation (10) defines the
asymptotically exact behavior of the non-detection probability of a target which diffuses in
the presence of a concentration of diffusive searchers [36]. Thus, the asymptotic behavior
of PN is independent of the target diffusion coefficient (see also [37] and [22–26] for
more details).

• The result in equation (3) can be generalized to the case of imperfect recognition of the
target, that is, when target recognition upon encounter occurs with probability p < 1 [34].
In one-dimensional systems, the leading asymptotic behavior of PN is independent of p
provided that p > 0, and thus is also described by equation (3).

We seek a large-N expansion of SN , in which (to arrive at the correct optimization) it is
essential to retain not only the leading divergent contribution as N → ∞ but also, if present, a

6



J. Phys. A: Math. Theor. 42 (2009) 434008 G Oshanin et al

constant N-independent correction term. Turning to the limit z → 1− (N � 1) and inverting
equation (9) we find, after some rather tedious but straightforward calculations, that SN obeys

SN = f1N
1/2 + f2 + O

(
1

N1/2

)
, (12)

where the coefficient f1 is given by

f1 =
(

8

π

τ + L2

τ + T

)1/2

, α > 0, (13)

=
(

8

πT

)1/2

, α ≡ 0. (14)

The parameter

τ ≡ α

1 − α
(15)

is an important physical parameter which defines a characteristic time for a ‘continuous tour of
diffusion’, that is, the typical time spent by a searcher on the substrate between two consecutive
off-lattice flights. Note that the leading term in equation (12) grows as N1/2, which means that
the leading behavior is that of a random walk, albeit intermittent, unless there is an additional
dependence of f1 on N via the optimization of equation (12) with respect to α and L. Note also
that the coefficients f1, f2, . . . are discontinuous functions of α and that α ≡ 0 is a singular
point since it is not possible for a random walker that skips over L sites at each step to ever
visit all sites, cf [32]. This discontinuity should be viewed with appropriate caution since
for any fixed finite N, SN is a smooth function of α; the discontinuity arises because we are
describing an asymptotic behavior that is strictly valid only in the N → ∞ limit. Additional
details and explanations can be found in [20] and [32].

Returning to the asymptotic N → ∞ limit, for α ≡ 0 the constant term f2 ≡ 0, while for
0 < α < 1 (note that this double-sided inequality is strict) it is determined by

f2 = −2(α + (1 − α)L2)

π
√

α(1 − α)

∫ Um

0

du

sh(u)
√

1 − τ sh2(u)

×
(

1

2

sh2(2Lu)

sh2(Lu) + τ sh2(u)
− L

τ + L2
cth(u)

)
, (16)

where

Um = 1

2
ln

⎛
⎝2 − α

α
+

√(
2 − α

α

)2

− 1

⎞
⎠ . (17)

The integral in equation (16) cannot be performed in closed form, but its important contribution
to the problem can be estimated. Anticipating that effective search strategies take place when
2UmL � 1 (see below), we find that in this limit the leading behavior of f2 is given by

f2 ∼ − 2

π

(
τ 1/2 +

L2

τ 1/2

)
g(L), 0 < α < 1, (18)

where g(L) is a slowly varying function of L,

g(L) = ln

(
L

(1 + τ)(1 − α)1/2

)
+ 0.126 + O

(
1

L

)
. (19)

Equations (12)–(19) constitute our main general result and provide the basis for the design of
an optimal strategy through the choice of α and L. Below we discuss such a design and show
that, indeed, the optimal search strategies fulfill the assumption 2UmL � 1.
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3.1. Optimization: tuning α at fixed L

To highlight the optimization procedure, we start with the case studied analytically and
numerically in [20], shown again here for completeness, namely, we tune α but hold the
relocation length L fixed.

Note that SN defined by equations (12)–(19) is a non-monotonic function of the
characteristic diffusion time τ . Differentiating SN with respect to τ (discarding a weak
dependence of g(L) on τ ), we find that the maximum of SN with respect to τ is given
implicitly as the solution of the equation

∂f1

dτ

(
8N

π

)1/2

= 1

πτ 1/2

(
1 − L2

τ

)
g(L), (20)

where
∂f1

dτ
= 1

2

(
1

[(τ + T )(τ + L2)]1/2
− (τ + L2)1/2

(τ + T )3/2

)
. (21)

The left-hand side of equation (20) diverges when N → ∞, which indicates that in this case
with fixed L the optimal time τ of continuous tours of diffusion should tend to zero. We
find that to leading order in N the optimal τ = τopt, and hence the optimal value αopt of the
intermittency parameter α, are given by

αopt ∼ τopt ∼ T
L2/3 ln2/3(L)

(2πN)1/3
. (22)

This is consistent with the condition 2UmL � 1 since UmL ∼ L ln(1/α) ∼ L ln(N) � 1.
The symbol ∼ here and henceforth signifies the exact behavior to leading order in N. The
expected number of distinct sites visited by an intermittent random walk with an optimal α

and fixed L then is

SN ∼ L

T 1/2

(
8N

π

)1/2

, (23)

i.e., it differs by a factor of L/
√

T from the corresponding result for a standard nearest neighbor
random walk with α = 1 (Brownian search), equation (10).

The essential result of this subsection is an enhancement by a factor L/
√

T of the
expected number of distinct sites visited by an intermittent random walk with the distribution in
equation (2) and an appropriate N-dependent choice of the intermittency parameter compared
to the outcome of an ordinary random walk. Note that this effect appears in an exponent
in the non-detection probability, so it can become dramatically apparent. For example, for
L = 5, T = 1 and N = 104, with a density of searchers as low as ρ = 0.01, the non-detection
probability for a Brownian search is PN ≈ 0.2 while that of the optimal intermittent search
(αopt ≈ 0.07 for these parameters) we find PN ≈ 0.0003, a reduction of three orders of
magnitude! Note finally that in one dimension for fixed L the optimal strategy involves a
progressively smaller fraction of nearest neighbor steps as N is increased.

3.2. Optimization: tuning α and L for T = 1

Next, we consider both α and L in equation (2) to be tunable, but we fix T = 1, that is,
relocation to a nearest neighbor and to a neighbor a distance L away both take one unit of
time. This causes the relocation velocity V = L/T to become dependent on N via L. Setting
T = 1 in equations (12)–(19), we have

SN = (α + (1 − α)L2)1/2

(
8N

π

)1/2

− 2

π

((
α

1 − α

)1/2

+

(
1 − α

α

)1/2

L2

)
g(L). (24)
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Note that the first term on the right-hand side of equation (24) grows with L and thus favors
high values of L, but that the second term is negative and contains a higher power of L. This
‘competition’ suggests that there exists an optimal N-dependent value of L which leads to a
maximum in the number of distinct sites visited.

To determine the optimal value of L, we differentiate SN with respect to L. Again discarding
a logarithmically weak dependence of g(L) on L and anticipating that the optimal value of L
is large, such that L � (α/(1 − α))1/2 (to be checked later for consistency), we find that the
optimal value L = Lopt obeys

Lopt ln(Lopt) ∼
(

παN

2

)1/2

, (25)

and hence,

Lopt ∼ 2
(παN/2)1/2

ln(παN/2)
. (26)

Substituting this result into equation (24) then leads to the expected number of distinct sites
visited in an intermittent random walk with an optimal length Lopt of the relocation stage,

SN ∼ 2 (α(1 − α))1/2 N

ln(παN/2)
. (27)

Note the parabolic form of the prefactor as a function of α. The prefactor vanishes in the pure
limits α = 0 and α = 1, indicating that optimization in these pure cases is not possible. This
is a reflection of the fact that the leading behavior of SN in these limits is determined by terms
proportional to N1/2 and constant terms independent of N are absent.

Further optimizing the prefactor in equation (27) with respect to α, we find that αopt → 1/2
as N → ∞, and hence

SN ∼ N

ln(πN/4)
. (28)

This result is consistent with the earlier assumptions 2UmL � 1 and L � [α(1 −α)]1/2 since
here Um and α/(1 − α) are constants while Lopt diverges as N → ∞.

The result (28) shows that when T = 1, optimization of the intermittent search with
respect to both α and L leads to an additional factor N1/2/ ln(N) in SN via the coefficient
f1 in equation (12), which results in a much stronger dependence of the expected number of
distinct sites visited on the maximal time N. In fact, we have obtained a behavior close to
that of a two-dimensional Brownian motion, which signifies that optimal intermittent random
walks lead to only marginal oversampling. The optimal strategy here consists of taking
αopt = 1/2(τopt = T = 1), and relocation length Lopt as given in equation (26). Note that a
similar result, i.e., that the maximum SN is attained when the time spent on relocations is equal
to the time spent in the diffusive stage, has been obtained for a model describing a stochastic
search of a target site on a DNA by a protein [18, 38].

At this point, one might be tempted to say that exactly the same temporal behavior of
SN as in equation (28) can be found without resorting to any optimization procedure but by
merely taking a Lévy walk with μ = 1 in equation (1) (Cauchy distribution). Indeed, in this
case one obtains (see equation (2.20) in [39])

S
Cauchy
N ∼ 3

2π2

N

ln(N)
, (29)

where the normalization constant B in equation (1) with μ = 1 has been set to 3/π2.
Remarkably, comparing the prefactors in equations (28) and (29) one notes that the search
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based on the intermittent strategy with fine-tuning of the optimization parameters outperforms
the one based on a Cauchy distribution due to a numerical factor which is more than six times
larger in the intermittent walk.

Moreover, we emphasize that these algorithms are very different in their quality of
exploration of space. Consider, for example, the ‘density of visited sites’ defined by

	N = SN

2MN

, (30)

where MN is the expected maximal displacement in, say, the positive direction so that 2MN

is a measure of the range of the walk. The parameter 	N is thus a measure of how many
sites have been visited within the range of the walk. By definition, 0 � 	N � 1. For a
Lévy walk with a Cauchy distribution of the relocation length, the distribution of the maximal
displacement is well known [40]; the tail of this distribution exactly follows the behavior of
the parent Cauchy variables and hence M

Cauchy
N is infinite. This implies that the density of

visited sites vanishes, 	N = 0, and thus the exploration quality is very poor. The expected
maximal displacement of the intermittent random walk can be found from the general result
of [41],

2MN = (α + (1 − α)L2)1/2

(
8N

π

)1/2

+ γN + O

(
1

N1/2

)
, (31)

where

γN = 2

π

∫ ∞

0

dk

k2
ln

(
2(1 − α cos(k) − (1 − α) cos(kL))

(α + (1 − α)L2)k2

)
. (32)

We thus find that 	N → 1/2 as N → ∞, which signifies that intermittent random walks have
a very good exploration quality in that they visit half of the sites within their range. This is not
a result expected a priori since we are dealing with random walks that involve steps not only
to nearest neighbor sites but also to distant sites. We note that the exploration quality may be
further enhanced by optimizing both SN and 	N .

3.3. Optimization: tuning α and L for fixed V

We finally turn to the most difficult case, when relocation over distance L proceeds with a
finite fixed velocity V . Note that this differs from the previous case, where T = L/V was
fixed. We take note of two points:

• We expect that αopt ∼ 1 since flights over distance L are less favorable now that each
relocation costs time T = L/V during which no new sites are visited. If it turns out that
the optimal relocation distance again grows with N (as it does, see below), then the time
T grows with N as well. This in turn implies that it might become more advantageous
to remain on the lattice, which means that the optimal τ might be larger than that in the
previous case.

• On the other hand, the expression in equation (18) is only valid when 2UmL � 1. If
αopt ∼ 1, then Um ∼ √

(1 − α)/α = 1/
√

τ 	 1. Consequently, approximation (18) will
be valid if the optimal characteristic time τ is not too large, i.e., τ 	 L2.

Differentiating equation (12) with respect to τ (again discarding the logarithmically slow
variation of g(L) with τ ), we have(

1√
(τ + L/V )(τ + L2)

−
√

τ + L2

(τ + L/V )3/2

) (
8N

π

)1/2

= 2

π

(
1√
τ

− L2

τ 3/2

)
g(L). (33)

10
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Since equation (18) is only valid when τ 	 L2, equation (33) can be simplified to yield

L

(τ + L/V )3/2

(
8N

π

)1/2

= 2

π

L2

τ 3/2
g(L). (34)

Now we proceed as follows. We first assume that τ 	 L/V , find τopt and Lopt, and check
whether the assumption is valid. Then we will follow with a more accurate calculation.

If τ 	 L/V , then

τopt = L5/3g2/3(L)

V (2πN)1/3 . (35)

Substituting this expression into equation (12), we have

SN = V 1/2L1/2

(
8N

π

)1/2

− 2

π
V 1/2L7/6g2/3(L) (2πN)1/6 . (36)

Differentiating the latter expression with respect to L, we find that Lopt is defined implicitly
by

L
2/3
opt g

2/3(Lopt) = 3
7 (2πN)1/3, (37)

which implies that

τopt = Lopt

V

Loptg
2/3(Lopt)

(2πN)1/3 = 3

7

Lopt

V
. (38)

Hence, τopt is not much smaller than Lopt/V . It is only smaller by a numerical factor and
scales as Lopt ∼ N1/2/ ln(N) (note that nonetheless τopt 	 L2

opt). Note also that τopt → ∞ as
N → ∞, which implies that αopt → 1 and Um ∼ (1 − α)−1/2 ∼ τ 1/2.

We next try to search for optimal L and τ from equation (34) supposing that Um ∼ τ 1/2

and τ = CL/V , where C is a constant to be determined. We note that in this case

g(L) = ln(L) − ln((1 + τ)
√

1 − α) + 0.126 + O

(
1

L

)

≈ 1
2 ln(L) − 1

2 ln(C/V )

≈ 1
2 ln(L). (39)

Hence, equation (34) becomes

V 3/2L

(1 + C)3/2L3/2

(
8N

π

)1/2

= 2

π

L2

τ 3/2

1

2
ln(L). (40)

From equation (40) we find that the optimal value of τ obeys

τopt = (1 + C)

V

L5/3 ln2/3(L)

(2πN)1/3
, (41)

and SN , optimized with respect to τ , then follows

SN =
(

LV

1 + C

)1/2 (
8N

π

)1/2

− 1

π

(
V

1 + C

)1/2

L7/6 ln2/3(L)(8πN)1/6. (42)

Differentiating this equation with respect to L, we find that the optimal flight length L obeys

Lopt ln(Lopt) = (
3
7

)3/2
(8πN)1/2, (43)

11
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so that

Lopt ∼
(

3
7

)3/2
(8πN)1/2

ln
( (

3
7

)3/2
(8πN)1/2

) . (44)

Lastly, we obtain C from the definition τopt = CLopt/V . This gives

(1 + C)
Lopt

V

L
2/3
opt ln2/3 (L)

(8πN)1/3 = C
Lopt

V
(45)

which is solved by

C = 3
4 . (46)

Thus the optimal strategy is realized when we choose Lopt as in equation (44), and τ = (3/4)T ,
i.e., for the optimal strategy the characteristic time of a tour of diffusion between two
consecutive long jumps is three-fourths of the time a searcher spends on jumps over a distance
L.

Finally, we combine these results to find that the expected number of distinct sites visited
optimized with respect to both α and L at fixed V is

SN =
(

4

7

)1/2

V 1/2L
1/2
opt

(
8N

π

)1/2

∼ V 1/2 N3/4

ln1/2(N)
. (47)

Note that this more intricate optimization procedure results in a faster growth law of SN with
N than in the pure random walk cases. Consequently, the search efficiency has again been
enhanced by orders of magnitude, albeit not as much as in the fixed-T case of the previous
subsection.

4. Conclusions

We have considered the design of an optimal search strategy of a hidden target by a given
density ρ of random walkers who have a limited maximal time N to find the target. The
analysis is restricted to one-dimensional systems. Our measure for the quality of a strategy is
the minimization of the probability PN that the target is undetected within the given maximal
search time. In particular, we considered strategies that consist of a combination of nearest
neighbor walks and jumps of fixed length L, both involving steps in either direction with equal
probability. The motion of each searcher is thus intermittent. The probability that the target is
undetected is just the survival probability for the target and is related to the distinct number of
sites SN visited by a walker up to time N by the well-known relation PN = exp(−ρSN). Our
goal was thus to maximize SN . We stress that the time derivative of PN defines the distribution
function of the first passage time to the detection event. This means that in contrast to previous
work [15–18, 20], our aim has been to optimize the full distribution function and not only its
first moment.

Our model has three parameters: α, the probability that the next step of the walker is a
nearest neighbor step; L, the length of a long step; and T = L/V , where T is the time it takes
to cover a long step and V is the velocity of a long step. The parameters α and L are optimized
as functions of the maximal time N under different constraints. We compared our results for
SN with those of a nearest neighbor random walk, SN ∼ (8N/π)1/2, and of a Lévy walk with
a Cauchy distribution of step lengths, SN ∼ (3/2π2)N/ ln(N).

If L and T are fixed and only α is picked for optimal strategy, the best choice is to take it to
be very small, α ∼ N−1/3 [20]. Most of the random motion then consists of steps of length L.

12
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The resulting SN is larger than that obtained with a nearest neighbor random walk by the
numerical coefficient L/

√
T , Sn ∼ (L/T 1/2)(8N/π)1/2, so that the non-detection probability,

which involves this factor in the exponent, can be decreased by orders of magnitude even for
a low density of searchers.

If we optimize both α and L, the best choice of these parameters depends on the constraint
we place on the third parameter. It the time for a long step is the same as the time for a
nearest neighbor step, then the optimal choices are α = 1/2 and L ∼ N1/2/ln(N). Thus,
short and long steps should occur with equal likelihood, and the optimal distance covered
by the long steps grows (slowly) with increasing observation time. In this case, the distinct
number of sites visited is even larger (again by a numerical factor) than that of a Lévy walk,
SN ∼ N/ ln(πN/4). These N dependences are the same for any fixed value of T, although the
specific numerical coefficients depend on this value. We find an important difference between
the Lévy walk and our optimized intermittent walk in the coverage of space, which may be an
important feature if one wishes to parallelize the searches of different walkers. The density
of visited sites vanishes in the Lévy case, while that of the intermittent walk approaches a
constant with increasing N.

Finally, if we again optimize both α and L but now keeping the velocity V of the long steps
fixed (which means that the time for a long step grows with the length of the step), we find the
optimal choice α to be close to unity, α ∼ 1 − 4V ln(N)/3N1/2, and the optimal length step
to grow with N as L ∼ N1/2/ln(N). Now the walkers rarely jump over long distances, but the
time spent diffusing and the time it takes to make a jump of length L both grow with increasing
observation time N, so that τ = 3T/4. The distinct number of sites visited here shows a
growth intermediate between the other two intermittent strategies, SN ∼ V 1/2N3/4/ ln1/2(N).

We stress that in all the strategies considered here, we have implemented a maximum
observation time N as part of the optimization process, and we have used a particular measure
of the quality of a strategy, namely, that the probability of survival of the target be minimized
within this time. We have shown that in one dimension even a simple intermittent step
distribution consisting of nearest neighbor steps and long steps of fixed N-dependent length
can be optimized so as to yield far better search outcomes than a nearest neighbor random
walk and even a Lévy walk with a Cauchy distribution of step lengths. The model can be
generalized and further optimized in a number of ways, some of which we have noted in the
course of our analysis.
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